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Objectives

We developed a new ultra low noise, dual-polarized, and
sideband separating radiometer front-end at submillimeter
wavelengths using high electron mobility transistor (HEMT)
amplifiers.

The low-noise amplifier front-ends will be used in place of the
SIS mixers currently proposed for the SMLS instrument on the
GACM mission.

The dual-channel SMLS cover the 180-270 GHz and 620-660
GHz frequency bands. We designed amplifier based receivers
with noise temperatures close to those of the existing SIS
mixers, but at an operating temperature of 20K rather than 4K.

This represents a major simplification in design; and mass,
power, as well as risk reductions for SMLS.



@ Science Drivers

Terahertz Radiometers are used for Atmospheric
Chemistry, Air Pollution, and Global Monitoring
¢ Stratospheric and Tropospheric Chemistry

- ozone layer modeling
- economics vs. environment
- water distribution/pollutants

¢ Clouds: Global Warming
- ice crystal: size & distribution

e Aerosols, Volcanism, Dust
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Remote sensing with fine height
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* The Scanning Microwave Limb Sounder (SMLS) on GACM
will have the capability to map the composition of the
upper troposphere and stratosphere with 50x50x1 km
spatial sampling and six times daily mid-latitude repeat &
coverage. :

* SMLS is a direct successor to the MLS instruments flown on
NASA’s UARS and Aura spacecraft launched in 1991 and
2004, respectively.

* Resolution of critical outstanding questions in climate
stability, weather, and climate forecasting, and the long- 1-
range transport of air pollution, requires global
measurements of upper tropospheric (8-16 km altitude)
humidity, cloud ice, and composition with far better spatial
and temporal resolution than currently available.

* The SMLS will provide these needed measurements, along foV\ Pl

with information required for understanding ozone layer <o 200 250

sta blllty. Cloud ice ?nd CO measurements
at submillimeter wavelengths.
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Why Amplifiers?

Traditional submillimeter-wave heterodyne receivers for high
resolution spectrometers use:

e Superconductor Insulator Superconductor (SIS) mixers
* Hot Electron Bolometer (HEB) mixers
» Schottky diode mixer

There were no amplifiers at the submillimeter-wave band

Amplifiers at submillimeter wavelengths:

* LNA with sufficient gain at the front-end, reduces noise contribution
from mixers and IF amplifiers.

* Power amplifiers at these frequencies improves LO efficiency.

* High-level of integration of receiver front-ends — on a single chip or
block.

* Leads to multi-pixel receiver designs.



Cryogenic Amplifiers

At lower frequencies, HEMT amplifiers cooled to 20K provide a
significant improvement in noise over room temperature.
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Cryogenic Amplifiers

Amplifiers still cannot compete with SIS or HEB in noise performance!

Still, there are several advantages of using cooled amplifiers over
SIS or HEB mixers:

e It is much easier, and significantly lower in power, to cool to the higher
temperature.

e The performance (sensitivity) of cooled MMIC and SIS systems is not that
different, especially when you add the atmospheric brightness to the system
temperature.

e The ability to run over a large range of temperatures is a big bonus, as a
degraded cooling system results in degraded performance, not in a dead
system (as would happen with an SIS front-end).

e MMIC systems are easier to work with from the 1st LO perspective, and that
they are much more convenient when it comes to balanced amplifier
configurations, correlation radiometers, and array systems.



@’ Amplifier Based Earth Science Instrument

Schematic Block Diagram of Amplifier Based Receiver Front-End
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Amplifier Based Earth Science Instrument
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Scientific Importance of Sideband Separation

Aura MLS “folded sideband” configuration

Lower sideband Upper sideband Intermediate
Frequency signal

—

The Aura MLS receivers take the two spectra on either side
of the local oscillator and fold them on top of each other to
give the observed “Intermediate Frequency” (IF) signal...

The “folded sideband” nature of the Aura MLS signals presents a significant challenge
to measurements in the UT/LS.

The far-wing/continuum signal in the upper sideband (green) adds a “baseline” but
also partially attenuate the weak spectral signal from the target molecule (red).

The far-wing/continuum signal in the lower sideband (blue) simply adds more
baseline.

Deducing the abundance of the “red” molecule from the total signal, given the two
differently behaving background signals, equates to pulling three unknowns (“red line”
and two continua) from only two measurements (“line shape” and “background”).

We solve this by reporting upper and lower sideband separately.
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 The radio frequency (RF) signal is first amplified by a low-noise
amplifier (can be cooled to 20K to improve signal to noise).

* RF hybrid circuit along with mixers separate the two sidebands.

e These are split in the back-end IF processing and spectrometer
subsystems.
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@Dual Polarization

and Ortho-Mode Transducer

 Ortho-mode transducers

separate input signals to two
linear polarizations.
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“Development of a Wideband Compact Orthomode Transducer
for the 180-270 GHz Band,” IEEE Trans. THz Sc. Tech., vol. 4, no.
5, pp. 634-636, September 2014.
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]

Waveguide Quadrature Hybrid

dB

e 6-branch waveguide quadrature hybrid

e Performance from 620 — 660 GHz:
— Measured balance +1 dB
— Measured phase 90t5°
— Measured return loss < -25 dB
— Measured isolation < -25 dB
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Terahertz InP HEMT Circuits
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@ Terahertz InP HEMT Amplifiers
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Terahertz InP HEMT Amplifiers

Circuit:A14FD_P, Mask:NACT1, Wafer:4524-007
Vd=1.2V,Id=42mA, TF S/N:02
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@ Cryogenic Measurement Set-Up

Cryogenic measurement set-up performs semi-automated measurements.

Multipliers

Chopper Amplifier
IF Mixer ynder Test

.

Cold load i
Noise temperature

measurement set-up
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@’ Cryogenic Measurement Set-Up
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Amplifier Measurements

180-270 GHz Amplifiers: Cryogenic Noise Temperature Measurements
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Amplifier Measurements

180-270 GHz Amplifiers: Cryogenic Noise Temperature Measurements
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@ Amplifier Measurements

640 GHz Amplifiers: Cryogenic Noise Temperature Measurements
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Best Measured Results (only two blocks had this results).
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@ 180-270 GHz Sideband Separated Receiver

Corrugated MMIC Amplifiers Sideband Separating 230GHz
Horn (Two Stages) MMIC Mixer Multiplier
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@Cryogenic Sideband Separation Measurement
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@ 240 GHz Single Sideband Receiver Results

Noise Temperature at Both the Sidebands at 20K
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@ 240 GHz Single Sideband Receiver Results

Noise Performance as a Function of IF Frequency at 20K
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@ 240 GHz Single Sideband Receiver Results

Sideband Ratios at 20K as a Function of RF Frequency
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240 GHz Single Sideband Receiver Results

Sideband Ratios (dB)

Sideband Ratios at 20K as a Function of IF Frequency
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@’ 640 GHz Single Sideband Receiver Results

20K Results
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Summary

* Cryogenic amplifiers at 640 GHz are showing a almost a factor
of eight improvements in noise temperature when cooled to
20K, similar to amplifiers at millimeter wavelengths.

* It is now feasible to design and develop HEMT based
receivers which will offer performance close to SIS mixers,
but at 20K.

* Integrating mixers and frequency multipliers on the same
chip leads to highly integrated receivers — opens the door for
multi-pixel cooled terahertz receivers.
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